
Using design patterns for a compiler modeling
for posing disjunctive optimization programs

Juan Jose Gil y Aldo Vecchietti
Universidad Tecnológica Nacional – Regional Santa Fe

INGAR – Instituto de Desarrollo y Diseño
Avellaneda 3657 – 3000 Santa Fe – Argentina

e-mail: aldovec@ceride.gov.ar –jgil@frsf.utn.edu.ar

Abstract. In this article, the use of software design patterns for modeling the stages

of a compiler is presented. The compiler is generated for expressing disjunctions and

logic propositions into optimization mathematical programs. It works linked to a

mathematical modeling system, because the introduction of logic into those programs

completes them instead of replacing them. It works as a post-compilation step of the

mathematical language compiler. The language for disjunctions and logic

propositions is based on the proposal of Vecchietti and Grossmann (2000). In order

to accomplish the objectives: independence of the mathematical system, flexibil ity

for introducing changes and easy to maintain; several software design patterns are

used such as: Visitor, Composite, State and Adapter. The compiler is now linked to

the mathematical program system GAMS. Several test are performed to check its

behavior. In the future some other mathematical systems wil l be used to link the

compiler.

1. Introduction

Traditionally, optimization models involving linear/non-linear equations and constraints, and

also discrete decisions are represented as mixed integer non-linear program problems (MINLP).

These problems are diff icult to solve, one important issue to reach the solution is to provide an

eff icient model for the discrete decisions. Over the past five years there was an intensive research

activity on disjunctive programming as an alternative for the MINLP formulation. Disjunctions and

logic propositions are used to represent the discrete decisions in the continuous and discrete space

respectively. The logic is introduced at the level of the problem formulation and solution

techniques. The main research areas dealing with logic into mathematical program problems are:

Disjunctive Programming (Raman and Grossmann, 1994; Turkay and Grossmann 1996, Bjorkqvist

and Westerlund, 1999; Vecchietti and Grossmann, 1999) and Constrained Logic Programming

(Hajian et al. 1995; Darby-Dowman et al, 1997). Since the modeling framework proposed by

Raman and Grossmann (1994), new algorithms and solution techniques have been proposed. One of

main reasons those techniques have not been widely used yet, is because there is not a system to

write those type of models. The most known systems for solving mathematical optimization

problems, e.g. GAMS, LINDO, AMPL, are not prepared for posing a disjunctive model. They do

not have a language for expressing disjunctions and logic propositions. Therefore, it is necessary a

language to incorporate disjunction and logic propositions in to mathematical program problems.

This work is concerned about disjunctive models and the language compiler implementation for

writing this type of models based on the language approach proposed by Vecchietti and Grossmann

(2000). The compiler has been implemented in a computer code called LogMIP. This article

describes the compiler stages, their modeling and design using software patterns, that provide to the

compiler several important features such as: modularity, flexibility, maintainability.

2. Compiler stages

Compilers by definition take a string as input and produce another string as output. Text

formatters, programs that convert file formats or different programming languages drop in the

category of compilers. One of the main lessons learnt about compilers is how to split it into parts.

At the highest level there are three parts: the front end that understands the syntax of the source

language, the mid-end that performs high level transforming/optimizations and the back end that

produces the output in a previously established language. Fig. 1 represents this situation.

At a lower level, a compiler consists of various stages (Aho et al., 1986). In the LogMIP

compiler designed five of them are implemented: Lexer, Parser, Semantic Analysis, Intermediate

Code extractor and Code Extractor. Each of these stages will be explained in this paper. In Fig. 2 it

is shown this fives stages and the data structure and data passed between these stages.

Tree Intermediate
Representation Front End Mid-End Back End

OutPut

Fig. 1: Par ts of a compiler

Tokens Tree Semantic
Analysis

Tree Lexer Parser

Intermediate
Code Generation

Code Extractor
Intermediate
Representation

Output Code

Figure 2: Phases adopted in LogMip’s Compiler

For LogMIP we are extending an existing language for expressing mathematical program

problems, adding to it capabilities for expressing disjunctions and logic constraints. This situation

makes LogMIP Compiler (LMC) has special characteristics, because the interaction between both

compilers must be solved. This situation can be seen in Fig. 3:

From Fig. 3, it can be seen that LMC is receiving a mathematical program model syntactically

correct according to the mathematical language. The Extended Input file (with mathematical and

disjunctive constraints) has been checked in its mathematical constructions. Then the LogMIP

compiler checks the logic constructions and, if they are correct, the output passes to the Solver such

that the model is solved. Using this approach a great level of independence is obtained, because the

LMC can extend any mathematical program system. Besides, on the other end any Solver

implementing the solution algorithms can be used.

The following sections explain how is reached the first step, how is mapped the second one,

shows the capabilities of this approach and the future work in LogMIP Compiler.

3. Design Patterns used into LogMIP compiler

Lexer (or lexical analyzer)

The lexer is the first step the language compiler. Its purpose is to decompose the input

stream into tokens, which represents reserved words in the language under analysis (LogMIP and

Mathematical Language) and some string that have extra information associated (e.g.: identifiers,

numbers). Besides, each token have a position in the input stream and a code that identifies it from

the other tokens of the language. Fig 4. shows those concepts in an object oriented view:

Disjunctive
Model

Math. (modified)
Model

Mathematical
Compiler

LogMip
Compiler

Solver
Solution Solution

Extended
Input

Figure 3: LogMip Compiler and Mathematical Compiler interactions

Terminal

pos it ion()
str()
code()

Secuence

_str

str()

IdSecuence

code()

int IdSecuence::code()
{ return 1; }
string Secuence::str()
{ return _str; }

ReservedWord<StrWord,CodeWord>

str()
code()

int ReservedWord<StrWord,CodeWord>::code()
{ return CodeWord; }
int ReservedWord<StrWord,CodeWord>::str()
{ return StrWord; }

Figure 4: Terminal Symbols Representation in LogMip Compiler Lexer.

Parser (or Syntax Analyzer).

Parsing is the process of understanding the language syntax, such that it can be represented

by the compiler internal data structures. The most sophisticated ideas humans can relay to

computers are communicated with programming languages. This has made programming languages

compromises between the human thought process, the computers execution process and the

computers capability to understand a language. The parser deals with the last facet of the problem.

In a more strict definition, the parser is the one, which verifies if the input is valid under the

grammar describing the language. If the input is a valid one, the parser must generate a syntax tree

representing in an internal structure the information modeled on it. This syntax tree is an

intermediate representation of the input analyzed, which is used by the next phases of the compiler

to get a result. Usually it consists of an n-tree where the leaves are tokens (terminal symbols) found

in the input, the intermediate nodes represent the different rules matched by the parser, and the root

symbolizes the input itself. For the tree representation is used the Composite design pattern

(Gamma, 1994). This pattern composes objects into tree structures to represent part-whole

hierarchies, and lets clients treat individual objects and compositions of objects uniformly. The

implementation is shown in Fig. 5.

The tree is created as follows: first, the parser always has a node representing the root (the

input representation). Then, once the parser recognizes a rule, it creates a new node (a symbol) that

is the internal representation for that rule and adds it to the tree. Because this process consumes

huge amounts of memory and processor’s time, it is avoided the creation of nodes and relationships

when it is known the tree wil l not be used. It occurs when the parser founds a lexical or a syntax

error. In this case the compiler wil l not attempt to continue with the other phases because it knows

the input is incorrect. In this situation the compiler will try to find more lexical/syntax errors on the

input. Once the parsing is done, no more phases will then be executed. This means that while the

input is valid the parser must construct nodes and add it to the syntax tree. When a lexical or syntax

error is discovered, the parser stops the tree generation because the compiler wil l finish the

execution after this phase. The parser state diagram is shown in Fig. 6.

The State design pattern (Gamma, 1994) is used to model this situation. The abstraction that

encapsulates the parser states and their behavior is AbstractSyntaxTreeConstructor where two

specializations are introduced, which are AstcValid for the “constructor” state and AstcInvalid for

the errors finder. Under this situation it can be considered that there are two families of symbols:

Terminal NonTerminal

Symbol

Figure 5: Syntax Tree with Composite

Real Symbols and Null Symbols. Real Symbols are those instantiated while the input is valid. Null

Symbols are used for invalid inputs. The creation of those object families (Real and Nulls) is

performed by the Abstract Factory pattern implementation.

With this approach, the parser could change the state and still continue the process of

creating symbols (nodes) for the syntax tree. More independence respect of the Subjacent

Mathematical Compiler (SMC) is obtained because this representation permits to change the leaves

(terminal symbols) or even the intermediate nodes (the rules that conforms the LogMip grammar)

without changing the parser itself (note that this change could be necessary to make LogMIP

grammar naturally absorbed by the SMC grammar).

The difference between the two specializations is that while AstcValid create nodes and the

relationships between the nodes, AstcInvalid does not make anything about them. Fig. 7 shows the

interface of AbstractSyntaxTreeConstructor and the implementations of three methods: one that

relates two symbols, one that creates a symbol, and the other that manipulates an input in the

specialization.

Constructing The Syntax Tree

Searching For New Errors

end of
input
stream

Matched Rule Syntax or
Lexical Error

end of
input

stream

Figure 6: States of the LogMip Parser

AstcValid
add()
errorFounded()
newDeclaration()

AstcInvalid
add()
errorFounded()
newDeclaration()

AbstractSyntaxTreeConstructor
add(rule : NonTerminal*, elem : Symbol*) : Symbol*
newAccess(id : Symbol*) : Symbol*
newDeclarationsSentence() : Symbol*
...
analyzer() : SyntaxAnalyzer*
errorFounded(anError : Error*)
errorManager() : ManagerOfErrors*

SyntaxAnalyzer
errorFounded()
setConstructor()
getConstructor()

Symbol* add(NonTerminal* rule, Symbol* elem) {
 rule->add(element);
 return rule;
}
void errorFounded(Error* e) {
 analyzer()->setConstructor(new AstcInvalid());
 analyzer()->errorFounded(e);
}
Symbol* newDeclaration(Symbol* id, Symbol* txt)
{ return new DeclarationSymbol(disjunction, txt); }

{ return rule; }

void errorFounded(Error* e)
{ errorsManager()->add(e); }

Symbol* newDeclaration(Symbol* id, Symbol* txt)
{ return null; }

Symbol* add(NonTerminal* rule, Symbol* elem)

Figure 7: State & Abstract Factory Patterns in the LogMip Abstract Syntax Tree Constructor

The Semantic Analyzer.

This is the first step of the denominated mid-end part. This analyzer is the responsible for

evaluating if the problem input stored on the syntax tree (sentences, expressions, etc.) is conformant

with the semantics of the input language. At this point LogMIP Compiler evaluates:
�

the declarations of disjunction entities,
�

if the modeler is reinterpreting the mathematical identifiers,
�

if the modeler is declaring a disjunction that is already declared,
�

if the modeler is defining a disjunction more than one time,
�

if an access to an identifier corresponds to the category expected (LogMIP and

Mathematical ones)
�

and the relationships between the disjunctive term conditions.

At this point it is important to define the interaction between de LogMIP compiler (LMC) and

the Mathematical compiler (SMC). The interaction occurs at the level of identifiers, because

identifiers of the mathematical language are used to define constructions in LogMIP language. Two

implementations of the Adapter design pattern are used for this purpose: one is defined for interact

with all the entities (Identifier abstraction), and the other is modeled for treating mathematical

identifiers loader (IdentifiersLoader abstraction). In this way, if LMC is linked to a different SMC,

a new implementation of Identifier must be done plus a new loader of SMC identifiers table. No

other change is necessary on the rest of the compiler. Fig. 8 shows the Adpater implementation and

how the Template Method pattern is used to define a common algorithm to load the mathematical

symbols. This method is used to guarantee that when a mathematical symbol is loaded all the

conditions to access it are already loaded.

Example of specialization

to get around Gams Internal

Disjunction

Mathematic Entitie

Restriction Index Variable

GamsRestriction

GamsVariable

GamsIndex
Structures.

Identifier IndentifierTable

IdentifiersLoader
load()
loadVariables()
loadIndices()
loadRestrictions()

depends

GamsLoader

instantiate

void load(...) {
 ... // preconditions
 loadIndices(...);
 loadVaraibles(...)
 loadRestrictions();
 ... // posconditions
}

Figure 8: Adapter & Template Method Patterns in the LogMip Compiler

The Visitor design pattern is used to implement the mid -end algorithms that visit the nodes

of the syntax tree. This choice was made because this pattern allows the algorithm definitions to

operate over the abstractions without modifying them. Using this approach the compiler could add

and subtract operations on the syntax tree without modifying its representation. Moreover, the

NonTerminal abstraction (the ones who represents the different rules that conforms the LogMIP

grammar) has been modeled with an implementation of the Iterator method, such that Visitor can

parse non-terminal symbols without known its internal structure. Complement this approach an

implementation of the Command design pattern, which lets the compiler to use the iteration

algorithms over the tree, encapsulating the invocation to the accept method. This model is shown in

Fig. 9:

When the parser finds an access to an identifier, it adds a new node in the syntax tree that is

an instance of the AccessSymbol class. This class represents any access in the model, access to

LogMIP disjunction identifiers, mathematical identifiers (variables, restrictions, indices) or

individual index items. Due to there is only one method that “parse” a node, the semantic analyzer

must consult itself the access type is validating, which can be deduced from the context

information. After that, it performs the corresponding action. This situation limits the analyzer

behavior to a numbered of access types, meaning that if a new type of access or a new type of

context access increases LogMIP semantics, the analyzer must be changed to consider the new

situation. To solve this problem, the semantic of the accesses was considered as a part of the

visit(sentence : SentenceIfSymbol&)

Figure 9: Visitor & Command Patterns at LogMip Syntax Tree/Mid-End
Part

 CompilerMidPhase
theAcceptor() : Acceptor&
visit(program : ProgramSymbol&)
visit(declaration : DeclarationSymbol&)

visit(definition : DefinitionSymbol&)

Acceptor
operator()()
phase()

void operator() (Symbol* s) {
 s->accept(phase());
}

SemanticAnalyzer

NonTerminal
begin()
end()

Symbol
accept(phase : CompilerMidPhase)

ProgramSymbol
accept(phase : CompilerMidPhase)

void accept(CompilerMidPhase& phase) {
 phase.visit(*this);
 for_each(begin(), end(), phase.theAcceptor());
}

The symbols that compose an
instance of NonTerminal are
defined by [begin(), end())

.....

Semantic Analyzer states. The design pattern State was implemented to model that behavior

because it allows new states (access types) without introducing changes in the Semantic Analyzer.

In this way, when the analyzer arrives to an access symbol, delegates the corresponding

actions to the “access semantic state”. This is shown in Fig. 10.

Intermediate Code Generation.

This phase is the responsible of converting the human legible representation into a machine

code representation. At this point all language constructions have been checked, they are free of

errors, and the compiler can now traduce the input to a more efficient representation, not necessary

the final one, introducing some improvements (called optimizations). In our case we have to iterate

over the syntax tree to generate a new interpretation of the logic information modeled by disjuntions

and logic constraints. This phase is related to the mid-end part and is modeled using the Visitor

implementation, which has been introduced with the Semantic Analyzer. This phase uses also the

State design pattern already explained for the semantic accesses. So that, in this section it will be

explained the basics of the Intermediate Code Generator (ICD) (see Fig. 11).

 The internal code representation is similar to the nodes for the syntax tree viewed before. In

deed, there is a one to one relationship for almost every symbol that is non-terminal. To model this

semantic representation a mix between Visitor & Composite patterns was used (Fig. 12).

In the InternalSemantic abstraction, there are three methods defined: accept() defines new

operations over the ICR without changing it, generateLogic() insert into the output stream the

CompilerMidPhase

InternalCodeGenerator AccessCodeGenerator state

Figure 11: Internal Code Generator abstraction in the
LogMip’s Compiler

Figure 10: State Pattern Design in LogMip Semantic Analyzer

AccessToVariableSemantic AccessToItemsSemantic

AccessToDisjunctionDefinitionSemantic AccessToDisjunctionDeclarationSemantic

AccessToRestrictionSemantic

SemanticAnalyzer
disjunctionDefinition()
disjunctionDeclaration()
variableSemantic()
itemsSemantic()
indexSemantic()
accessSemantic()

AccessSemantic
analyze()

information about LogMIP constructions (the disjunctive logic) in a pre-established format; and

finally generateLogicUsing(), which is used to insert into the output stream LogMIP constructions

with some restrictions in the generated logic. The graph of this model is shown in Fig. 12.

Another abstraction called CompilerBackPhase is defined to visit InternalSemantic’s

specializations, but it is not used at this moment of the model, it is only defined to allow the

expansion of LMC such that it adopt some new action without change the semantic abstractions.

4. The Compiler Abstraction

In the previous sections the components and the internal representation of the LMC have

been presented, but nothing has been said about the compiler itself. Although, the compiler can be

defined by using its components (lexer, parser, table of identifiers and so on) without nothing more,

it would be complex to see all the interactions and relationships existing between them. Further

more, it could be too complex to define a new specialization of LMC to interact with another

mathematic compiler.

To encapsulate this knowledge and to provide a single, common interface to the compiler,

the Facade design pattern is used. By adopting it, a compiler client only has to request the

compilation of the input. If a new mathematic compiler will be linked to LMC, it will be necessary

the specialization of the concept given before in some pre-defined way. The Facade class diagram

is shown in Fig. 13.

Figure 12: Internal Code representation for the LogMip’s
Compiler

ComplexSemantic

begin()
fin()

InternalSemantic

accept()
generateLogic()
generateLogicUsing()

SimpleSemantic

IndexItem

DisjunctiveModel

Disjunction

Identifier

Besides, the compiler has to permit a new specialization to achieve new mathematical

compilers. Such objective has been traduced in the introduction of the Builder design method. With

this, a modeler can introduce a new specialization of LogmipCompiler without worries about how

the compiler has to deal with them. The Builder implementation is presented in Fig. 14. In that

figure is also shown a possible specialization of LogmipCompiler to interact with the mathematical

system GAMS.

LogmipCompiler abstraction provides a common sequence to perform the compilation of

the inputs leaving to its specialization how the actions of this sequence are executed. This is

modeled using the Template Method pattern over the compile() method of LogmipCompiler. The

algorithm used as the implementation of the template method is shown in Text 1.

An abstraction denoted as Arguments provides the independency about the way LMC can

be executed. This means that the specialization of LogmipCompiler could define extra invocation

parameters, which do not affect compile() method. If a mathematic compiler needs something not

provided yet this model can insert it into the specialization. The arguments abstraction is an

Abstract factory absorbing the parameters needed by the specialization.

Figure 13: Facade Design Pattern in LogMip’s Compiler

ComplexSemantic InternalSemantic

IndentifiersTable

DisjunctiveModel

LogmipCompiler

compile()

AbstractSyntaxTreeConstructor Lexer SyntaxAnalyzer

IdentifiersLoader

SemanticAnalyzer

InternalCodeGenerator

Termina
l

NonTerminal AstcValid AstcInvalid

Error

ManagerOfErrors

Finally, note that the code extraction phase of the LMC it is not explained anywhere. The

reason is because its definition has been delegated to the generateLogic() method defined at

InternalSemantic. This is shown in Text 2. This is not a limitation in the code extraction phase. If a

solver does not understand the output of the logic generated by LogMIP compiler, a new Code

Extraction Phase can be generated as a specialization of CompilerBackPhase. Fig. 15 shows an

example of this.

void LogmipCompiler::compile(Arguments& arguments) {

 createErrorsManager();

 precompile(arguments);

 analyseSyntax();

 analyzeSemantic();

 generateCode();

 obtainLogic();

 solve();

}

Text 1: Template Method pattern in the LogMip’s Compiler

Figure 14: LogMip compiler as an Builder pattern implementation

LogmipCompiler
createLexer()
createParser()
createTreeConstructor()
createSemanticAnalyzer()
createErrorsManager()
loadMathIdentifiers()
…

GmsAttachedCompiler
createLexer()
createParser()

createLexer();

void loadMathIdentifiers() {
 createLoader();
 getLoader()->load(...);
 _identifiers = getLoader()->identifiers();
}

void createParser() {
 if (NULL != _parser) {
 createTreeConstructor();
 }
 _parser=new GmsParser(getLexer(),getTreeConstructor);
}

void createLexer() {
 if (NULL != _lexer)
 _lexer=new GmsLexer;
}

void LogmipCompiler::generateCode() {

 logmipModel()->generateLogic(outputStream());

}

Text 2: Template Method pattern in the Code Extractor Phase

5. Conclusions

We have presented the model of a compiler to express disjunctions and logic propositions

with unusual characteristics because it works as a post-compilation step. The input of LMC is the

output of a mathematical compiler, and the output of LMC is expected by another application

commonly a mathematical/logic solver. Under this context, the objectives for the LogMIP compiler

generation were: a high independence from the mathematical compiler that LMC is extended,

flexible to introduce new constructions and easy to maintain.

To accomplish those objectives we have used some special software design patterns: the

State allows as to extend the model in an easy way by encapsulating the possible states of the

abstractions and to change the different states the abstractions can hold; Visitor permits a flexible

model extension by defining the operations in the mid-end and back-end stages out of the internal

compiler representation, Adapter allows the independence of LMC from the SMC. Other software

design pattern as was explained before helps in accomplish the objectives of this work.

 LMC is now linked to the mathematical system GAMS, we are testing its behavior. We are

working on the other end of the compilation: the solvers. For the future the plan is to link LMC to

other SMC like AMPL

References
 �

Aho, A; Sethi R. and Ullman, J., “Compilers: Principles, Techniques and Tools” . Addison-
Wesley, 1986.

 �
Brooke y otros, “GAMS, User’s Manual” , Gams Development Co., 1996.

InternalSemantic
accept()
generateCode()
generateCodeUsing()

CompilerBackPhase

depends/iterate over

GmsAttachedCompiler

void obtainLogic() {
 XmlLogicExtractor extractor(...);
 logmipModel()->accept(*extractor);
}

GmsAttachedWithXmlOutputCompiler
obtainLogic()

XmlLogicExtractor

instantiate

Figure 15: A possible instantiation of CompilerEndPhase, a logic extractor in XML format.

� Darby-Dowman K., Little J., Mitra G. y Zaffalon M. “Constraint Logic Programming and
Integer Programming Approaches and Their Collaboration in Solving an Assignment
Scheduling Problem” . Constraints, 1, 245-264, 1997.

� Gamma E., Helm R., Johnson R. y Vlissides J., “ Design Patterns. Elements of Reusable

Object Oriented Software” . Addisson Wesley, 1994.

� Garlan, D. y Shaw M. “ Advances in Software and Knowledge Engineering” . New Jersey:
World Scientific Publishing Co. (1993).

� ILOG Solver 4.3User’s Manuals. ILOG, 1998.

� Lee S. y Grossmann I.E. “ New algorithm for Nonlinear Generalized Disjunctive
Programming” . Computers and Chemical Engineering, , 24, 9, 2125-2142, 2000.

� Raman R. y Grossmann I.E., “ Modeling and Computational Techniques for Logic Based

Integer Programming” . Comp. Chem. Eng., 18 (7), 563-578, 1994.

� Turkay M. y Grossmann I.E. ,“ Disjunctive Programming Techniques for the Optimization
of Process Systems with Discontinuous Investment Costs-Multiple Size Regions” . I&EC
Research, 35 (8), 2611-2623, 1996.

� Van Hentenryck P. y Saraswat V. “Strategic Directions in Constraint Programming” .

ACM Computing Surveys, 28, 4, 701-726, 1996.

� Vecchietti A. y Grossmann I.E. “ LOGMIP: A Disjunctive 0-1 Nonlinear Optimizer for
Process System Models” . Comp. Chem. Eng., 23, 555-565, 1999.

� Vecchietti A. y Grossmann I.E. “Modeling issues and implementation of language for

disjunctive programming” . Comp. Chem. Eng., 24, 9, 2143-2155, 2000.

� Wallace M., Novello S. y Schimpf J.“ Eclipse: A platform for Constraint Logic
Programming” . Technical Report, IC-Parc, Imperial College, London, 1997.

