LogMIP 2.0
USER”S MANUAL

October 2011

By Aldo Vecchietti
aldovec@santafe-conicet.gov.ar

LogMIP 2.0 User’s Manual

INDEX
Introduction........ccceeeurnenene e s st
Disjunctive model formulation..........ccccvvnrneinennennninnsnisnnnnnas
2.1 SMALL EXAMPLE 1coccvrirvencnnisnnsnssnsenssnsssnsssssanssenes
2.2 SMALL EXAMPLE 2........ccccvrverreisnrsensenssnnssnssnssnsssnssens
23 NONLINEAR EXAMPLE.........cccceesvtivninnnnnninrisensssanisnnes
How to write a disjunctive model for LogMIP.........c.cccceeruenne
3.1. Controlling disjunctions and constraints domain.......

3.2, Using a DUMMY Equation........ccccccerverneercnneseccnnssnnsnnnes
LOZIC Propositions.........cceeeeemrrnecniiesnesseesnnssnssnssssssessassnsssnssnssanes
4.1. Declaration Sentence...........ccoceunecvessssnnisessssesscnnnnes
4.2. Definition Sentence..........cccovevenrnnneesesssesssenennens
SOIVETS....oouirieiiitittintt st s s s s e sae s
5.1. Solution Algorithms for Linear Problems.....................
5.2. Solution Algorithms for Non-Linear Problems........
Recommendations and Limitations...........cececeecevnencnvnicescsunenns

REFEIENCES.....ccceerenreeecrrineereerneeseesessesssesssnssasesessasssesssasansssnesnssnnes

LogMIP 2.0 User’s Manual

1. Introduction

LogMIP 2.0 is a program for solving linear and nonlinear disjunctive programming problems involving binary

variables and disjunction definitions for modeling discrete choices. While the modeling and solution of these

disjunctive optimization problems has not yet reached the stage of maturity and reliability as LP, MIP and

NLP: Disjunctive problems have a rich area of applications.

LogMIP 2.0 has been developed by Dr. Aldo Vecchietti from INGAR (Santa Fe-Argentina), Professor Ignacio E.

Grossmann from Carnegie Mellon University (Pittsburgh-USA) and the cooperation of GAMS’s staff. It

becomes a progress from its previous version (LogMIP 1.0).

PLEASE NOTE:

LogMIP 1.0, works for 22.6 (December 2007) until 23.6 (December 2010) GAMS releases.
LogMIP 2.0 is included from 23.7 GAMS release. LogMIP 1.0 does not work anymore from this
release.
Changes in version 2.0 are at the level of language, where LogMIP now uses the EMP syntax and
modeltype.
Solvers for linear disjunctive models (Imbigm and Imchul)l are combined in one new called just
logmip.
In this version, non-linear disjunctive models can be solved using Big-M and convex hull relaxations
algorithms.
Non-linear solver Imlboa (Logic-Based Outer Approximation) does not work inLogMIP 2.0, a new
version is currently developed and will be ready for a next GAMS release.
LogMIP is composed of:

0 language sentences for the definition of disjunctions and logic constraints, and

0 solvers for linear and non-linear disjunctive models.

These parts are linked to GAMS, becomes a subset of GAMS language and solvers respectively.
LogMIP cannot be executed independently of GAMS system.

Besides of disjunction definitions, LogMIP needs the declaration and definitions of GAMS’s scalars,
sets, tables, variables, constraints, equations, etc.; for the specifications and solution of a disjunctive
problem.

LogMIP 2.0 User’s Manual

2. Disjunctive model formulation

The models for LogMIP have the following general formulation (Generalized Disjunctive Programming —GDP):
min Z=> ¢, +f(x)+d'y
k

st.

g(x)<0

r(x)+Dy<0

Ay<a

Yik
v h,(X)<0 | keSD
k Cy =7
Q(Y)=True

xeR", ye{0,1}%, Y e{True, False}",c, >0

X, C, are continuous variables,

y are binary variables (0-1),
Yi are Boolean variables, to establish whether a disjunction term is true
or false
Q) logic relationships between Boolean variables,
f(x) objective function, which can be linear or non-linear,
g(x) linear or non-linear inequalities/equalities independent of the discrete choices,

r(x)+Dy<0 mixed-integer inequalities/equalities that can contain linear or non-linear
continuous terms (integer terms must be linear),
Ay <a linear integer inequalities/equalities
dy linear fixed cost terms.

Before explaining the details about the sentences to pose a disjunctive problems and its solvers, in the next
sections three small examples are presented in order to illustrate the meaning of the previous GDP
formulation. The first two corresponds to linear models, the later to a nonlinear one.

LogMIP 2.0 User’s Manual

2.1. SMALL EXAMPLE 1

minZ =T
sa. T=xx,+8
T>Xg +5
T>X.+6

=Y,

-Y,

—Y,

T,X5 Xg, Xe 20
Y, €{true, false}, k =1,2,3.

Yl
Vv
| X5 —Xc +5<0 Xc —=Xp +2<0

- v,
\4
| Xg —X; +1<0 Xe —Xg +6<0

- v,
\4
| Xp —Xg +5<0 Xg — X, <0

This example corresponds to a Jobshop
(Jobshop scheduling) problem, having three
jobs (A,B,C) that must be executed
sequentially in three steps (1,2,3), but not all
jobs require all the stages, meaning that the
jobs will be executed in a subset of stages. The
processing time for each stage is given by the
following table:

Job/stage |
A
|
|

B
C

The objective is to obtain the sequence of
task, which minimizes the completion time T.
In order to obtain a feasible solution the
clashes between the jobs must be eliminated.

For more details about this formulation see
Raman y Grossmann (1994).

LogMIP input file for this example

First Version — Using 3 explicit binary variables

BINARY VARIABLES Y1, Y2, Y3;
POSITIVE VARIABLES XA, XB, XC, T,
VARIABLE Z;

EQUATIONS

EQUAT1, EQUAT2, EQUAT3, EQUAT4, EQUATS,
EQUAT6, EQUAT7, EQUATS, EQUATY, DUMMY, OBJECTIVE;

EQUATL.. T=G=XA+8;
EQUAT2.. T=G=XB +5;
EQUAT3.. T=G=XC +6;
EQUAT4.. XA —XC +5=L=0;
EQUATS5.. XC — XA +2=L=0;
EQUAT6.. XB—XC +1=L=0;
EQUAT7.. XC—XB + 6 =L=0;
EQUATS.. XA —XB +5=L=0;
EQUATY.. XB - XA =L=0;

OBJECTIVE.. Z =E=T;
XA.UP=20.: XB.UP=20.: XC.UP=20.:

Constraint independent
of discrete choices

Constraints for
discrete choices
(disiunctions)

DUMMY.. Y1+Y2+Y3 =G=0;

$ONECHO > "%lm.info%"

* by default the convex hull reformulation is used

disjunction Y1 equat4 else equat5
disjunction Y2 equat6 else equat?7
disjunction Y3 equat8 else equat9

* optional, if not set EMP will find the modeltype suitable

modeltype mip
$OFFECHO

GAMS s variable and
equation declarations

GAMS equation and constraint
definitions.

Constraint definitions
corresponding to disjunction
must be defined here.

Dummy equation just to avoid
the elimination of variable Y
from the model, which handles
disjunction terms.

Disjunction definitions
according to the new (EMP)
syntax rules.

Note that constraints
belonging to a disjunction
term are declared (given its
name) in this section.

LogMIP 2.0 User’s Manual

OPTION EMP = LOGMIP; —

OPTION OPTCR=0.0;
MODEL SMALL11 /ALL/;
SOLVE SMALL11 USING EMP MINIMIZING Z;

EMP must be in the SOLVE sentence which includes

environment

LogMIP

Calls LogMIP solvers now belonging to the EMP

Second Version — Using default Boolean variables in disjunction definitions

POSITIVE VARIABLES XA, XB, XC, T;

VARIABLE Z;

EQUATIONS
EQUAT1, EQUAT2, EQUAT3, EQUAT4, EQUATS,
EQUAT6, EQUAT7, EQUATS, EQUATY, OBJECTIVE;

EQUATL..
EQUAT2..
EQUATS..
EQUATA4..
EQUATS..
EQUATS..
EQUATY..
EQUATS..

EQUATO..

T=G=XA+8;
T=G=XB +5;
T =G= XC + 6;

XA -XC+5=L=0;
XC- XA+2=L=0;
XB-XC+1=L=0;
XC-XB +6=L=0;

Constraints independent
of discrete choices

(disjunctions)

Constraints for
discrete choices
(disjunctions)

X(A)-X(B)+ 5 =L=0;

X(B)-X(A) =L=0;

OBJECTIVE.. Z=E=T,
XA.UP=20.; XB.UP=20.; XC.UP=20.;

$ONECHO > "%Im.info%"
default BigM <4——-

-

disjunction * equat4 else equat5
disjunction * equat6 else equat7
disjunction * equat8 else equat9

GAMS“s variable and equation
declarations. NOTE THAT no
binary variables are defined
here because * is defined in
disjunction”s section

Note that a constraint

> belonging to a disjunction
term is declared (given its

name) in this section.

By means of this sentence LogMIP is forced
to executed the BIGM relaxation method with
default values of the M parameter

|

* optional, if not set EMP will find the modeltype suitable
modeltype mip
$OFFECHO

OPTION EMP = LOGMIP; <—

OPTION OPTCR=0.0;
MODEL SMALL11 /ALL/;
SOLVE SMALL11 USING EMP MINIMIZING Z;

EMP must be in the SOLVE sentence. EMP includes

CEUFgUIIVLEUIIL UL E Rl E LEUIID MUV uRy

to the new (EMP) syntax rules. The
* symbol is replaced by a default
binary variable names in this case

Call to LogMIP solvers, now belonging to the EMP

LogMIP

environment

LogMIP 2.0 User’s Manual

Third Version — Alex Meeraus compact version
SETSJJOBS /A,B,C/
S STAGES /1*3/
GG(J,J) Upper Triangle
ALIAS (3,J7),(S,SS);

TABLE P(J,S) Processing Time

1 2 3
A 5 3
B 3 2
cC 2 4
PARAMETER
C(@J,S) Stage Completion Time
W(J,3J) Maximum Pairwise Waiting Time
PT(J) Total Processing Time
BIG The Famous Big M;

GG(J,3) = ORD(J) < ORD(JJ);

C(J,S) = SUM(SS$(ORD(SS)<=ORD(S)), P(J,SS));
W(J,dJ) = SMAX(S, C(J,S) - C(3J,S-1));

PTQ) =SUM(S, P(J,9));

BIG =SUM(J, PT(J));

VARIABLES T Completion Time
X(J) Job Starting Time
Y(J,JJ) Job Precedence

POSITIVE VARIABLE X;
BINARY VARIABLE Y;

EQUATIONS COMP(J) Job Completion Time
SEQ(J,JJ) Job Sequencing
DUMMY;

COMP(J).. T =G= X(J) + PTQJ);
SEQ(J,J0)$(ORD(J) <> ORD(JJ)).. X(J) + W(J,dJ) =L= X(JJ);
DUMMY... SUM(GG(J,dJ), Y(J,J3)) =G= 0;

X.UP(J) = BIG; NOTE THAT when a disjunction is

defined over a domain, the elements
expansion must be done by using
file, put and loop or while GAMS
sentences. The control over de

MODEL SMALL13 /ALL /;

file lg / '%Im.info%' /; put Ig "* problem %gams.i%';

loop(gg(.jj)$(ord(j) <> ord(jj)), domain is done through de the
putll'd|SJunct|0n "Y(j) seq(.ij) else’ seq(jj.)); dollar sign $. Do not forget to
putclose;

include a line feed (/) when you
write a new disjunction

OPTION EMP = LOGMIP; «—— (Calls LogMIP solvers, now belonging to the EMP
OPTION OPTCR=0.0; environment

MODEL SMALL11 /ALL/;
SOLVE SMALL11 USING EMP MINIMIZING Z;

EMP must be in the SOLVE sentence which includes
LogMIP

LogMIP 2.0 User’s Manual

2.2. SMALL EXAMPLE 2

minc+2x, +X,
s.a.:
Yl Y2
X, +X,+2<0|v|2-X,<0
c=5 c=7

Y, —Y,
4
X, —X,<1] |x,=0

Yl A\ —|Y2 = —|Y3
Y2 = —|Y3
Y,= Y,

0<x,<5,0<x,<5,.c20

Y, e{true,false},j=1,2,3

Small example for illustration purpose. It is
composed by two disjunctions each one with
two terms.

Each term of the first disjunction is handled
by different variables. The first term is true if
Y, is true; the second term of the first
disjunction is true if Y, is true.

The second disjunction is handled just for one
variable: Y;. The first term apply if Y; is true,
the second if Y; is false.

The logic propositions indicates that:

1. IfY,is true and Y, false it implies that Y;
must be false.

2. Y;and Y; cannot be both true at the same
time.

LogMIP input file for this example
SCALAR M /100/;

BINARY VARIABLES Y1,Y2,Y3;

POSITIVE VARIABLES X1,X2,X3, C;
VARIABLE Z;

EQUATIONS EQUAT1, EQUAT2, EQUAT3, EQUAT4, EQUATS5, EQUATG,

OBJECTIVE;
EQUATL.. X2 =L=X1-2;
EQUAT2.. C =E=5;
EQUATS.. X2 =G=2;
EQUATA.. C=E=7;
EQUATS.. X1-X2=L=1;
EQUATS.. X1 =E=M*Y3;

Logic Equation L1,L2,L3;
L1..yl and noty2->noty3;
L2..y2 ->not y3;
L3..y3->noty2;

OBJECTIVE.. Z =E= C + 2*X('1) + X('2);
X.UP(J)=5; C.UP=T;

$ONECHO > "%Im.info%"

disjunction y1 equatl equat2 elseif y2 equat3 equat4_

disjunction y3 equat5 else equat6
$OFFECHO
OPTION OPTCR=0.0, EMP=LOGMIP;

MODEL SMALL2 /ALL/;
SOLVE SMALL2 USING EMP MINIMIZING Z,

in the GAMS Section. GAMS has
extended its Language Syntax to
define this type of constraints

NOTE THAT Logic Constraints are NOW
declared (Logic Equation) and defined

OBSERVE the different syntax used to
pose a two term disjunction; the
first one where the terms are
handled by two different variables
(yl and y2); while the second one is
handled by just one variable (y3)
one term is satisfied by the TRUE
value and the other with FALSE.

LogMIP 2.0

User’s Manual

2.3. NON-LINEAR EXAMPLE

Synthesis of 8 pr

ocesses

X Y
14 X1 6 Xy
—{ 6
X12 ¥ X13
4 Y7 X X X
X
21 22 | %23 24
Y, 7 >
X2s5 v
5 8
X1s XlG,L X17 X18
s F——{ 8
A
Y
1%

8
min Z=Yc, + a'x+122
k=1

st
Mass Balances

X, = X, + X4, Xg = X; + Xg

X3 + X5 = X5 + Xy

X = Xpp + X5y X3 = X9 + Xy

Xg + Xig + Xp5 =

X7

X t Xpp = Xpg0 Xp3 = Xy + Xy

Specifications
Xo - 08 X%; <
Xip = O Xy <

0,X,-04x,; =20
0,X,- 2%, 20

LogMIP 2.0 User’s Manual

Disjunctions:

Y, Y,
exp(x;)-1-x, <0 V| X3=X, =0
| c,=5 c, =0 |
Y, —Y,
exp(x;/1.2)-1-x, <0 |v X, =X =0
| c,=5 c, =0 |
Y, —Y,
15X, +Xg-Xg =0 |v| X3 =0, Xg = Xy
| c, =6 i c,=0
[Y, | —Y,
1.25(X, + %) = X3 =0 |V X, =X = X, =0
i c, =10] c,=0
Yo —Y;
X5 2% =0 |V X5 =X =0
i C; =6 c;=10
Y, —Y,
eXP(Xy /1.5)-1-X,g <O [V| X=X, =0
| Co=7 ce =0
I Y, —Y,
exXp(X,) -1- X, <0 VI Xy =X, =0
i c,=4 c, =0
Y, —Y,
eXP(Xyg) -1- Xyo- X7 SO |V | Xpg = X7 = X3 =0
| Cg =5 cg =0
Logic Propositions:
Y13Y3VY4VY5 Y53Y8
Y23Y3VY4VY5 Y63Y4
Ys=>YivY, Y= VY,
Y3 = Yg Y3 = Y3 \ Y5 \ (—|Y3 /\—|Y5)
Y43Y1VY2 Yll Y2
Y4 = YG \ Y7
Y53Y1VY2 Y4XY5

YGM Y7

LogMIP 2.0 User’s Manual

LogMIP INPUT FILE for this example

$TITLE APPLICATION OF THE LOGIC-BASED MINLP ALGORITHM IN EXAMPLE #3
* THE FORMULATION IS DISJUNCTIVE

$OFFSYMXREF

$OFFSYMLIST

* SELECT OPTIMAL PROCESS FROM WITHIN GIVEN SUPERSTRUCTURE.

*

SETS | PROCESS STREAMS / 1*25 /
J PROCESS UNITS / 1*8 /
PARAMETERS CV(I) VARIABLE COST COEFF FOR PROCESS UNITS - STREAMS
/ 3=-10 , 5=-15 , 9 = -40, 9= 25 ,21= 3 , 25 =-35
17 =80 , 14 = 15 , 10 = 15, 2=1 , 4= 1 , 18 = -65
20 = -60 , 22 = -80 /;

VARIABLES PROF PROFIT ;

BINARY VARIABLES Y(J) ;
POSITIVE VARIABLES X(1) , CF();:

EQUATIONS
* EQUATIONS Independent of discrete choices

MASSBAL1, MASSBAL2, MASSBAL3, MASSBAL4, MASSBALS5, MASSBALG6, MASSBAL7, MASSBALS8
SPECS1, SPECS2, SPECS3, SPECS4

* EQUATIONS allowing flow just IFF the unit EXISTS

LOGICAL1, LOGICAL2, LOGICAL3, LOGICAL4, LOGICALS5, LOGICAL6, LOGICAL7, LOGICAL8

* DISJUNCTION"S CONSTRAINTS and EQUATIONS

INOUT11, INOUT12, INOUT13, INOUT14 INPUT-OUTPUT RELATIONS FOR PROCESS UNIT 1
INOUT21, INOUT22, INOUT23, INOUT24 INPUT-OUTPUT RELATIONS FOR PROCESS UNIT 2
INOUT31, INOUT32, INOUT34 INPUT-OUTPUT RELATIONS FOR PROCESS UNIT 3
INOUT41, INOUT42, INOUT43, INOUT44, INOUT45 FOR PROCESS UNIT 4
INOUT51, INOUT52, INOUT53, INOUT54 INPUT-OUTPUT RELATIONS FOR PROCESS UNIT 5
INOUT61, INOUT62, INOUT63, INOUT64 INPUT-OUTPUT RELATIONS FOR PROCESS UNIT 6
INOUT71, INOUT72, INOUT73, INOUT74 INPUT-OUTPUT RELATIONS FOR PROCESS UNIT 7
INOUT81, INOUT82, INOUT83, INOUT84, INOUT85, INOUT86 FOR PROCESS UNIT 8
OBJETIVO OBJECTIVE FUNCTION DEFINITION ;
* BOUNDS SECTION:

X.UP("3") = 2.0 ;

X.UP("5") = 2.0 ;

X.UP("9") = 2.0 ;

X.UP("10") = 1.0 ;

X.UP("14") = 1.0 ;

X.UP("17") = 2.0 ;

X.UP("19") = 2.0 ;

X.UP("21") = 2.0 ;

X.UP("25") = 3.0 ;
*DEFINITIONS of EQUATIONS Independent of discrete choices

MASSBALL1. . X("137) =E= X("19%) + X("21%) ;

MASSBAL2. . X(*177) =E= X("9%) + X("16") + X("25%) ;

MASSBAL3. . X(*117) =E= X("12") + X("15%) ;

MASSBALA4 . . X("3") + X("5%) =E= X("6") + X("11%) ;

MASSBALS. . X("6") =E= X("77) + X("87) ;

MASSBAL6.. X("23%) =E= X("207) + X("227) ;

MASSBALTY. . X("237) =E= X("14") + X("24%) ;

MASSBALS.. X("1%) =E= X("27) + X("4") ;

SPECS1.. X(*10") =L= 0.8 * X("17") ;

SPECS2.. X(*10%) =G= 0.4 * X(*17%) ;

SPECS3. . X("12") =L= 5.0 * X("14") ;

SPECS4. . X(*127) =G= 2.0 * X("14%) ;
* DEFINITION of EQUATIONS allowing flow just IFF the unit EXISTS

LOGICALL.. X("2") + X("3") =L= 10. * Y("17) ;

LOGICAL2. . X(*4") + X(*5") =L= 10. * Y("27) ;

LOGICAL3.. X("9") =L= 10. * Y("3%) ;

LOGICALA4. . X(*127) + X("14") =L= 10. * Y("4") ;

LOGICALS. . X("15") =L= 10. * Y("5") H

LOGICAL6.. X("19") =L= 10. * Y("6%)

LogMIP 2.0 User’s Manual

11

LOGICAL7Y..
LOGICALS. .

X("21") =L=

X("10") + X("17") =L=

*DEFINITIONS of DISJUNCTION"s EQUATIONS

10. * Y('7Y)
10. * Y("8")

INOUT11.. EXP(X("3")) -1. =E= X("2") ;

INOUT14.. CF("1%) =E= 5 ;

INOUT12.. X("2") =E= 0 ;

INOUT13.. X("3") =E= 0 ;

INOUT21.. EXP(X("5")/1.2) -1. =E= X("4") ;

INOUT24.. CF("2%) =E= 8 ;

INOUT22.. X("4") =E= 0 ;

INOUT23.. X("5%) =E= 0 ;

INOUT31.. 1.5 * X("9") + X("10") =E= X("8") ;

INOUT34.. CF("3") =E= 6 ;

INOUT32.. X("9") =E= 0 ;

INOUT41.. 1.25 * (X("127)+X("14%)) =E= X("13") ;

INOUT45.. CF("4") =E= 10 ;

INOUT42.. X("12") =E= 0 ;

INOUT43.. X("13") =E= 0 ;

INOUT44.. X("14") =E= 0 ;

INOUTS1.. X("15%) =E= 2. * X("16") ;

INOUT54.. CF("5") =E= 6 ;

INOUTS2.. X("15") =E= 0 ;

INOUTS3.. X("16") =E= 0 ;

INOUT61.. EXP(X("20%)/1.5) -1. =E= X("19%) ;

INOUT64.. CF("6") =E= 7 ;

INOUT62.. X("19%) =E= 0 ;

INOUT63.. X("20") =E= 0 ;

INOUT71.. EXP(X("22%)) -1. =E= X("21%) ;

INOUT74.. CF("7%) =E= 4 ;

INOUT72.. X("21%) =E= 0 ;

INOUT73.. X("22") =E= 0 ;

INOUT81.. EXP(X(*18%)) -1. =E= X("10%) + X("17°);

INOUT86.. CF("8%) =E= 5 ;

INOUT82.. X("10") =E= 0 :

INOUT83.. X("17") =E= 0 ;

INOUT84.. X("18") =E= 0 ;

INOUT85.. X("25") =E= 0 ;

OBJETIVO .. PROF =E= SUM(J,CF(J)) + SUM(I , X(D*CV(1)) + 122 ;
LOGIC EQUATION ATMOST1; ATMOST1.. Y("1%) xor Y("2%);

LOGIC EQUATION ATMOST2; ATMOST2.. Y("4") xor Y("5%);

LOGIC EQUATION ATMOST3; ATMOST3.. Y("6") xor Y("7°);

LOGIC EQUATION IMPO; IMPO.. Y("1%) -> Y("3") or Y("4") or Y("5");
LOGIC EQUATION IMPL; IMP1.. Y("2%) -> Y("3") or Y("4") or Y("5%);
LOGIC EQUATION IMP2; IMP2.. Y("3") -> Y("8") ;
LOGIC EQUATION IMP3; IMP3.. Y("3") -> Y("1") or Y("2") ;
LOGIC EQUATION IMP4; IMP4.. Y("4") -> Y("1") or Y("2") ;
LOGIC EQUATION IMP5; IMP5.. Y("4") -> Y("6") or Y("7") ;
LOGIC EQUATION IMP6; IMP6.. Y("5") —> Y("1") or Y("2") ;
LOGIC EQUATION IMP7; IMP7.. Y("5%) -> Y("8") ;
LOGIC EQUATION IMP8; IMPS.. Y("6") —> Y("4") ;
LOGIC EQUATION IMP9; IMP9.. Y("7%) -> Y("4") ;

* BEGIN DECLARATIONS AND DEFINITIONS OF
$ONECHO > '%LM.INFO%'

DISJUNCTION Y('1") INOUT11 INOUT14 ELSE INOUT12 INOUT13 3
DISJUNCTION Y('2') INOUT21 INOUT24 ELSE INOUT22 INOUT23

DISJUNCTION Y('3') INOUT31 INOUT34 ELSE INOUT32

DISJUNCTION Y('4") INOUT41 INOUT45 ELSE INOUT42 INOUT43 INOUT44
DISJUNCTION Y('5") INOUT51 INOUT54 ELSE INOUT52 INOUT53

DISJUNCTION Y('6") INOUT61 INOUT64 ELSE INOUT62 INOUT63

DISJUNCTION Y('7") INOUT71 INOUT74 ELSE INOUT72 INOUT73

DISJUNCTION Y('8") INOUT81 INOUT86 ELSE INOUT82 INOUT83 INOUT84 INOUT85

* optional, if not set LOGMIP will find the modeltype suitable
MODELTYPE MINLP <

DISJUNCTIONS (LOGMIP Section)

J

$OFFECHO* end logmip section

OPTION EMP=LogMIP;
OPTION OPTCR=0.0;
MODEL EXAMPLE3 7/ ALL 7/ ;
SOLVE EXAMPLE3 USING EMP MINIMIZING PROF H

This is the new way of writing the
Logic Propositions to establish
relationships between the
disjunctions terms

Each line of this section defines a
new disjunction. For this purpose,
explicit binary variables are used.
The use of those is mandatory
when logic propositions are
defined

OBSERVE the model in this case is

non-linear, it is optional to use the
modeltype sentence to describe the
model nature

LogMIP 2.0 User’s Manual
12

3. How to write in GAMS a disjunctive model for LogMIP

The steps to write a problem into GAMS are the following:

a) Write in a GAMS input file (extension .gms) the sets, scalars, parameters, variables, equations and
constraints, and any other component necessary for the problem, like if you were writing an algebraic
problem.

e You must be familiar with GAMS notation to do so.

e You must also declare and define in this section the equations and constraints employed in
disjunction terms.

b) If you are not going to define disjunctions over a domain, write in the same GAMS input file the
sentences:

SONECHO > "%Im.info%"
SOFFECHO

the dollar sign must be in the 1% column. You must write all three keywords, between these two
sentences you must include disjunction definitions according to the rules of LogMIP language which have
changed to be included in the EMP Environment.

The syntax to write a disjunction is the following:

DISJUNCTION [chull [chull eps] | bigM [bigM Mvalue] | indic]
[Not] Var|*{equ}
{ELSEIF [Not] Var | * {equ}}
[ELSE {equ}]

According to the GAMS syntax rules the meanings of some symbols are the following:

[1 enclosed construct are optional
{} enclosed construct may be repeated zero or more times
[or

DISJUNCTION is a mandatory word, after that you have three optional constructs:
[chull [chull eps] | bigM [bigM Mvalue] | indic]

Which are related to the relaxation and transformation of disjunctions:
e chull (convex hull)
e bigM (big M relaxation)
e indic (indicator constraint)

In this version, you can choose among different relaxations for each disjunction.
The default option is the convex hull.
The convex hull and the bigM relaxations also have additional optional definitions:

LogMIP 2.0 User’s Manual
13

e For the convex hull, the epsilon (eps) parameter is an upper bound value to check for constraint
satisfaction (it has a default value).

e In the case of BigM relaxation, the Mvalue to be defined is the value of the M parameter, which
should be large enough to relax the constraint. It also has a default value, but it is important to
change to avoid infeasible solutions, for those cases where that value is not appropriate.

The next specification is the variable to handle the disjunction term, by means of the following construct:
[Not] Vvar| *

You must specify Var or *. The first option is to replace Var with a binary variable name defined in the GAMS

section; * is employed when the variable name is assigned by GAMS.

NOTE THAT: when using the Var option, make sure to write at least a dummy equation that uses them in

order to avoid the GAMS compiler take out from the model if they are not used in other equation/constraint

of the model.

[Not] is the negation of the variable, by means of this sentence the disjunction term is satisfied using the

FALSE value, instead of the TRUE value of the variable.

{equ} represents a set of constraint names (previously defined in the GAMS section) that must be satisfied if
the FIRST disjunction term is selected.

For the definition of a several terms disjunction you must also add the following construct:
{ELSEIF [Not] Var | * {equ}}

where ELSEIF is a mandatory word and then for each term you must specify a binary variable name (Var) or
* and also the constraints set to be satisfied ({ equ})

For the definition of a two terms disjunction using just one variable to handle both terms, you must also add
the following construct:

[ELSE {equ}]
where ELSE is a obligatory word, followed by the set of constraint to be satisfied if the term is selected.

NOTE THAT since one variable is used to handle both terms the construct Var or * is not needed in the ELSE
sentence.

Examples:
From Small Example 1 - First version:

disjunction Y1 equat4 else equat5
Corresponds to a two term disjunction having the following syntax rule:

DISJUNCTION Var { equ } ELSE {equ}
From Small Example 1 — Second version:

disjunction * equat4 else equat5

Corresponds to a two term disjunction having the following syntax rule:

LogMIP 2.0 User’s Manual
14

DISJUNCTION * { equ } ELSE {equ}

From Small Example 2:

disjunction y1 equatl equat2 elseif y2 equat3 equat4

Corresponds to a two term disjunction having the syntax rule of a several term, with the following syntax:

c)

DISJUNCTION Var { equ } ELSEIF Var {equ}

Defining disjunctions over a domain

The definition of a disjunction over a domain is performed using the put writing facilities of GAMS (for
more references about this topic read chapter “The Put Writing Facility” in GAMS User’s Guide). The
domain expansion is made via FILE and PUT sentences in combination with LOOP and/or WHILE GAMS
sentences. To control disjunction’s domain, you must use the dollar sign (S)(for more references read
section “The Dollar Condition” in GAMS User’s Guide). In the following paragraphs, the definition of
disjunctions over a domain is illustrated using some examples.

The following sentences are extracted from Third version of Small Example 1 in page 6 of this manual:

file Ig / '%Im.info%' /;
put Ig '* problem %gams.i%';
loop(lIt(j,jj))$(ord(j) <> ord(jj),
put / 'disjunction ' Y(j,jj) seq(j,jj) 'else’ seq(jj,i));
putclose;

Ui A W N =

The first line defines a FILE where Ig is an internal name for GAMS to refer to an external file, the name of
the external file is %Im.info% which is the default name used for LogMIP info file.

The second line (put Ig) writes on the file a comment (* problem %gams.i%).

The third line is a loop control sentence, the controlling domain is given by It(j,jj), meaning that the loop
will be executed over each member of the subset It(j,jj) but just for those where the order of j is different
to the order of jj, which is specified by the sentence $(ord(j) <> ord(jj).

Line 4 writes in file Ig a sentence containing the disjunction definition, suppose j is defined over domain
1,2 and 3, and that the order of j is 1 and 2, the consequence of executing line 4, the FILE Ig will have the
following line written:

Disjunction Y('1', '2') seq('1', '2') else seq('2','1')
In the next iteration of the loop sentence, the order of j changes to 3, then it writes a new line in the file,
Disjunction Y('1', '3') seq ('1', '3') else seq('3','1')
This process continue until each one the elements of It(j,jj) is covered
Please note that a new line character (/) is inserted in line 4; if that character is not placed in the
sentence, the previous lines would be written one next to the other, in this way:
Disjunction Y('1', '2') seq ('1', '2') else seq('2','1") Disjunction Y('1', '3') seq ('1', '3') else seq('3','1')

So, to avoid errors writing long lines it is important to include the line feed sentence (/) at the end of each
line.

LogMIP 2.0 User’s Manual
15

The next example corresponds to a mid-term contracts signature with suppliers, for more references
about this problem visit www.minlp.org in the GDP problems section. The following sentences are
extracted from that example.

file logMIP /"%LM.info%"/;
put logmip '* input=%gams.input%'
put / 'default BigM'/

1
2
3
4
5 loop((j,t)S(ord(j)=1 or ord(j)=4 or ord(j)=6),
6 put /' disjunction *' ubb1(j,t) costbctil(j,t)
7 ' elseif * ' ubb2(j,t) costbct2(j,t)
8 ' elseif * ' ubbno(j,t) costbno(j,t) ;
9)

10

11 loop(jS(ord(j)=1 or ord(j)=4 or ord(j)=6),

12 put /' disjunction *' Ib1(j,'1") costplctl(j,'1")

13 "elseif * ' 1b21(j,'1") 1b22(j,'2") costplct21(j,'1') costplct22(j,'2')
14 "elseif * ' 1b31(j,'1") 1b32(j,'2") 1b33(j,'3') costplct31(j,'1")

15 costplct32(j,'2') costplct33(j,'3')

16 " elseif *' lengnol(j,'1") lengno2(j,'2') lengno3(j,'3') costnol(j,'1’)
17 costno2(j,'2') costno3(j,'3') ;

18);

In line 1, it can be seen that the GAMS internal name of the file in this case is LogMIP. The third line
define that this problem is solved using the bigM relaxation.

The first disjunction definition starts in line 5, it is defined over the domain of sets j and t. Set j is
controlled by the elements of order 1, 4 and 6. The disjunction is expanded for the complete set t.
Suppose that the domain of t is defined over 1 and 2, then the loop sentence posed from lines 5 to 9
writes in the file the following sentences:

disjunction * ubb1('1', '1') costbct1('1’, '1') elseif * ubb2('1', '1') costbct2('1', '1') elseif * ubbno('l', '1') costbno('1', '1');
disjunction * ubb1('1', '2') costbct1('1’, '2') elseif * ubb2('1’, '2') costbct2('1’, '2') elseif * ubbno('1', '2') costbno('1’, '2');
disjunction * ubb1('4’, '1') costbct1('4’, '1') elseif * ubb2('4’, '1') costbct2('4’, '1') elseif * ubbno('4', '1') costbno('4’, '2');
disjunction * ubb1('4', '2') costbct1('4’, '2') elseif * ubb2('4', '2') costbct2('4’, '2') elseif * ubbno('4', '2') costbno('4’, '2');
disjunction * ubb1('6', '1') costbct1('6', '1') elseif * ubb2('6', '1') costbct2('6', '1') elseif * ubbno('6', '1') costbno('6', '1');
disjunction * ubb1('6', '2') costbct1('6', '2') elseif * ubb2('6', '2') costbct2('6', '2') elseif * ubbno('6', '2') costbno('6', '2');

The second disjunction definition starts in line 11, although it is also delimited by sets j and t, in this case
only j is controlled in the loop sentence, the elements of set t are explicitly included in the constraints
enumeration inside the disjunctions. Again the lines that this sentence writes in the file are the following:

disjunction * Ib1('1','1") costplct1('1','1’) elseif *Ib21('1','1') 1b22('1','2") costplct21('1','1’) costplct22('1','2)

elseif * 1b31('1','1") 1b32('1','2") 1b33('1",'3") costplct31('1','1") costplct32('1','2') costplct33('1','3') elseif *
lengnol('1','1') lengno2('1','2") lengno3('1','3') costno1('1','1') costno2('1','2') costno3('1','3') ;

disjunction * Ib1('2','1') costplct1('2','1') elseif * 1b21('2','1") 1b22('2','2') costplct21('2','1") costplct22('2','2')

elseif * 1b31('2','1") 1b32('2','2") 1b33('2",'3") costplct31('2','1') costplct32('2','2') costplct33('2','3') elseif *
lengno1('2','1') lengno2('2','2') lengno3('2','3') costno1('2','1') costno2('2','2') costno3('2','3') ;

disjunction * Ib1('3','1") costplct1('3','1’) elseif * 1b21('3','1’) 1b22('3','2') costplct21('3’,'1') costplct22('3','2')

elseif * 1b31('3','1") 1b32('3','2") 1b33('3",'3") costplct31('3','1') costplct32('3','2') costplct33('3','3') elseif *
lengno1('3','1') lengno2('3','2') lengno3('3','3') costno1('3','1') costno2('3','2') costno3('3','3') ;

LogMIP 2.0 User’s Manual
16

3.1. Controlling the disjunction’s and constraint domains.

The domain where disjunctions and constraints must be satisfied must be controlled via a loop
sentence in combination with dollar operator ($), this operator must be used in the same way than in
GAMS constraints definition.

3.2. Use of a DUMMY equation

Although it is not mandatory, we recommend to write a dummy equation into the GAMS section for
the binary variables that handle disjunction terms (disjunction conditions) previously defined in the GAMS
section. The purpose of this dummy equation is to avoid that GAMS compiler eliminate them from the
model (and from the matrix). It occurs when some or all variables are not used in other constraints in the
model. Suppose the following variables handling disjunction’s terms defined in GAMS section:

Binary variables Y(J);

If some or all variables of Y are not included in any equation or constraint defined in GAMS section,
they will be eliminated from the model, and LogMIP compiler will show an error even when they handle
disjunction terms. To avoid that, you must write the following constraint:

DUMMY.. SUM(J, Y(J)) =G=0;

which should be always satisfied. Another example:

Binary variablesy, w, z;
DUMMY .. y +w + z =G=0;

NOTE THAT this is not needed when you use the * option (default variable names) to handle
disjunction terms.

4. Logic Propositions

Logic propositions are used to pose relationships between the Boolean (Binary) variables handling the
disjunctive terms. Logic Propositions must be declared and defined in the GAMS Section.

4.1. Declaration Sentence
LOGIC EQUATION name

LOGIC EQUATION is a reserved word to specify a logic proposition, name must be provided by the user,
it must follow the rules of any constraint name.

4.2. Definition Sentence

The definition of a LOGIC EQUATION is similar to any other equation in the GAMS model (see Chapter
8. Equations in GAMS Users Guide), with the difference that is must include only the following operators:

Operator Symbol Operation
-> Implication
<-> equivalence
not negation
and logical and
or logical or
xor exclusive or

LogMIP 2.0 User’s Manual
17

Examples:

Declaration Sentence
LOGIC EQUATION ATMOST1, ATMOST2, ATMOST3, IMPO, IMP1, IMP2;

Definition Sentences

ATMOST1.. Y('1') xor Y('2');
ATMOST2.. Y('4') xor Y('5');
ATMOST3.. Y('6') xor Y('7');

IMPO.. Y('1')->Y('3') or Y('4") or Y('5');
IMP1.. Y('2')->Y('3') or Y('4') or Y('5');
IMP2.. Y('3')->Y('8")

5. SOLVERS

v

5.1.

LogMIP can solve linear/nonlinear disjunctive hybrid models that follow the formulation
showed in section 2 of this manual. Disjunctive models are those where discrete decisions
are written only in the form of disjunctions, while hybrid models involve both disjunctions
and mixed-integer constraints.

According to the user model type (linear or non-linear), by default, LogMIP decides the
solver to run. The user can also specify the model type by including the following sentence
in the LogMIP section:

modeltype [MIP|MINLP]
Solution algorithm for linear problems
Figure 1 shows how the solution for linear hybrid/disjunctive models is driven.

Fig. 1: solution algorithms for linear models

HYBRID/DISJUNCTIVE
LINEAR PROGRAM

y
Reformulated as MIP by BigM

or convex hull or indicators constraints
Relaxations

MIP

A

B&B
(OSL, CPLEX, GUROBI, XA)

LogMIP 2.0 User’s Manual
18

The disjunctions defined in the model are transformed into mixed integer formulations by using one
of the relaxations proposed: BigM or convex hull or indicators constraints. The complete set of
disjunctions can be transformed by one of those relaxations, or you can choose a different one for
each disjunction in the model. Then, the problem is converted into a Mixed Integer Program (MIP)
which is later solved by a Branch and Bound algorithm. References about the relaxations can be found
in Balas(1979), Vecchietti and Grossmann(2002).

The default relaxation is the convex hull. You can change it by introducing in the LogMIP section the
following sentence:

DEFAULT Big-M
By means of this sentence disjunctions are relaxed using the Big-M relaxation.

Since LogMIP 2.0 belongs to the EMP environment, to solve the problem you must write in the GAMS
input file the following two sentences:

OPTION EMP=LOGMIP;
SOLVE modelname USING EMP [MINIMIZING | MAXIMIZING] variablename
5.2. Solution algorithms for NON-Linear problems
Figure 2 shows the flowchart to solve non-linear hybrid/disjunctive models.

Fig. 2: solution algorithms for NON-linear models

HYBRID/DISJUNCTIVE
NON-LINEAR PROGRAM

y

Reformulated as MINLP by
BigM or convex hull
Relaxations

MINLP

A 4

MINLP Solvers
(SBB, DICOPT, BARON, ALPHAECP)

The disjunctions defined in the model are transformed into mixed integer formulations by using one of
the relaxations proposed: BigM or convex hull for non-linear problems. The complete set of
disjunctions can be transformed by one of those relaxations, or you can choose a different one for
each disjunction in the model. Then the problem is converted into a Mixed Integer Non-Linear
Program which is later solved by a MINLP solver such that: SBB, DICOPT, BARON, AlphaECP, etc.

LogMIP 2.0 User’s Manual
19

Logic Based Outer Approximation algorithm (Turkay and Grossmann, 1996a) does not work anymore
for this LogMIP version. A new system is developed, it will be ready for a next release.

The default relaxation is the convex hull. You can change it by introducing in the LogMIP section the
following sentence:

DEFAULT Big-M
By means of this sentence disjunctions are relaxed using the Big-M relaxation.

Since LogMIP 2.0 belongs to the EMP environment, to solve the problem you must write in the GAMS
input file the following two sentences:

OPTION EMP=LOGMIP;

SOLVE modelname USING EMP [MINIMIZING | MAXIMIZING] variablename

6. Recommendations and Limitations.

Write the GAMS file in a single way following a sequence: declare SETS, VARIABLES and EQUATIONS at
the beginning of the file, then pose the constraint, objective function and disjunctions definitions.
Finally write the options, model and solution sentences.

Although GAMS is flexible about the declarations of the equation and variable domains (you can
declare them or not), it is strongly recommended to explicitly declare all domains for every variable
and constraint defined in the model.

If possible, write your entire model in a single file, do not use the INCLUDE sentence to import an
external file in the model.

Note that constraints defined in the disjunctions are related with your declaration and definitions in
the GAMS section. In this sense you cannot include in the disjunction the name of a constraint not
previously defined. This is especially important for constraints defined in the GAMS section over a
domain controlled by the dollar sign ($). Disjunctive constraints must be in concordance with those
defined in GAMS section.

A similar advice is necessary for variables handling disjunction’s terms.

7. References.

The following is a list of articles where you can get a more complete material about disjunctive/hybrid
models and the algorithms to solve them.

Balas, E.

“Disjunctive programming”. Discrete Optimizations Il, Annals of Discrete Mathematics, 5, North Holland,

Amsterdam, 1979.

Balas, E.

“Disjunctive Programming and a hierarchy of relaxations for discrete optimization problems”, SIAM .

Alg. Dis. Meth., 6 (3), 466-485, 1985.

LogMIP 2.0 User’s Manual
20

Balas, E.
“Disjunctive Programming: Properties of the convex hull of feasible points”, Discrete Applied
Mathematics 89 (1), 3-44, 1998.

Brooke A., Kendrick D. and Meeraus A.
“GAMS a User’s Guide”. Gams Development Corporation, 1996.

Gil J.J. and Vecchietti A.
"Issues about the development of a disjunctive program solver". Proceedings of Enpromer, | ,403-409,
2000.

Gil J.J. and Vecchietti A.
“Using design patterns for a compiler modeling for posing disjunctive optimization programs”.
Proceedings of 31 JAIIO, September 2002, Santa Fe Argentina.

Grossmann I.E.
“Mixed-Integer Optimization Techniques for Algorithmic Process Synthesis”, Advances in Chemical
Engineering, Vol. 23, Process Synthesis, pp.171-246, 1996.

Lee S. and Grossmann I.E.
“New algorithm for Nonlinear Generalized Disjunctive Programming”.Comp. Chem. Eng. , 24 (9-10),
2125-2141, 2000.

Lee, S. and I.E. Grossmann,
"Logic-based Modeling and Solution of NonlinearDiscrete/Continuous Optimization Problems," Annals of
Operations Research: State of the Art and Recent Advances in IntegerProgramming, 139, 267-288, 2005.

Raman R. and Grossmann I.E.
“Modeling and Computational Techniques for Logic Based Integer Programming”. Comp. Chem. Eng., 18
(7), 563-578, 1994.

Sawaya, N.W. and Grossmann I.E.
“A Cutting Plane Method for Solving Linear Generalized Disjunctive Programming Problems,” Computers
and Chemical Engineering, 29, 1891-1913, 2005.

Sawaya, N.W. and Grossmann I.E.
“Computational Implementation of Non-Linear Convex Hull Reformulation,” Computers & Chemical
Engineering, 31, 856-866, 2007.

Turkay M. and Grossmann I.E.
“Logic-Based Algorithms for the Optimal Synthesis of Process Networks”. Comp. Chem. Eng., 20 (8), 959-
978, 1996.

Vecchietti A. and Grossmann I.E.
“LOGMIP: A Disjunctive 0-1 Nonlinear Optimizer for Process System Models”. Comp. Chem. Eng., 23,.
555-565, 1999.

Vecchietti A. and Grossmann I.E.
"Modeling issues and implementation of language for disjunctive programming”. Comp. & Chem. Eng,
24, 2143-2155, 2000.

LogMIP 2.0 User’s Manual
21

Vecchietti, A., S. Lee and I.E. Grossmann

“Modeling of Discrete/ContinuousOptimization Problems: Characterization and Formulation of
Disjunctions and their Relaxations,” Computers and Chemical Engineering 27, 433-448 2003.

Vecchietti A, and Grossman I.E.,
"Computational Experience with LogMIP Solving Linear and Nonlinear Disjunctive Programming

Problems," Proceedings of the Sixth International Conference on Foundation of Computer Aided Process
Design (FOCAPD 2004), p. 587-590 2004.

